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We predict two physical effects in arrays of single-domain nanomagnets by performing simulations using a
realistic model Hamiltonian and physical parameters. First, we find hysteretic multicycles for such nanomag-
nets. The simulation uses continuous spin dynamics through the Landau-Lifshitz-GilbertsLLGd equation. In
some regions of parameter space, the probability of finding a multicycle is as high as,0.6. We find that
systems with larger and more anisotropic nanomagnets tend to display more multicycles. Our results also
demonstrate the importance of disorder and frustration for multicycle behavior. Second, we show that there is
a fundamental difference between the more realistic vector LLG equation and scalar models of hysteresis, such
as Ising models. In the latter case spin and external field inversion symmetry is obeyed, but in the former it is
destroyed by the dynamics, with important experimental implications.
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I. INTRODUCTION

Hysteresis in magnetsf1,2g is a paradigm for all history
dependent behavior in naturef3–5g. In addition, hysteresis is
the cornerstone of the magnetic data storage industry, and of
great technological importancef6g. Understanding the full
possibilities of magnetic hysteresis is thus important for both
fundamental insights and practical implications.

Recently, we have shownf7g that spin glasses can exhibit
stable “multicycle” hysteresis loops, in that when the exter-
nal magnetic field is cycled adiabaticallysover a range that
does not reach saturationd, the magnetization returns to itself
afterm.1 cycles of the magnetic field. This behavior should
be experimentally observable in spin glass nanoparticles at
low temperature. Thus simple one-cycle hysteresis loops, al-
though ubiquitous and generally assumed to be universal, are
only part of a much richer phenomenon.

In our previous workf7g, we used the standard Edwards-
Anderson spin glass Hamiltonianf8g, with Ising spins and
nearest neighbor interactions in three dimensions. Zero tem-
perature dynamics or Monte Carlo dynamics at low tempera-
ture were used. Starting from saturation, the magnetic field
was lowered adiabatically, and then cycled repeatedly over a
suitably chosen range. When the system reached steady state,
the order of the multicyclesas defined in the previous para-
graphd was measured. Whether a multicycle is present, and if
so, its order, depended on the realization of randomness,
varying from one system to another.

There were two weaknesses in the previous work. First,
the systems considered were susceptible to thermal noise
meaning that very low temperatures were needed to prevent
fluctuations from destroying the periodicity. Second, the
model considered was an Ising model. Although this has well
defined equilibrium statistics, it is not clear that it adequately
represents the dynamics.

In this paper, we overcome the problems of the previous
paragraph by examining a different system as a candidate for
multicycle hysteresis behavior: an array of magnetic nano-
particles. With current technology, it is standard to fabricate
such magnetic arrays according to specification, and a wide
variety has been studied experimentallyf9g and these have

important applications for magnetic storage technology, so
called “patterned media”f10g. For our purposes, these sys-
tems offer many experimental advantages over the spin glass
nanoparticles that we considered earlier. One can build “de-
signer arrays” with optimized parameters that maximize mul-
ticycles and select them in a predictable manner. Spatially
resolved measurements are possible, unlike for the spin glass
case, making experimental observations of multicycles more
practical. The relatively large size and shape of these also
greatly reduce the effects of thermal noiseswhich is one
important reason that they are useful in disk drive recordingd.
Finally, the ability to address small regions of the array in-
stead of only applying a uniform external magnetic field, and
the sensitivity of multicycle phenomena to relatively small
changes in system parameters, may open up the possibility of
using these systems for computation.

Through numerical simulations, we demonstrate that mul-
ticycles can be seen in an array of pillars made of ferromag-
netic material, coupled to each other through dipolar forces,
arranged in square and triangular lattices. The external mag-
netic field is applied perpendicular to the lattice, i.e., parallel
to the axes of the pillars; to be specific, we will refer to this
as the vertical orz direction. The existence of multicycles is
robust, persisting over a large range of system parameters.

We also examine the importance of frustration and disor-
der in achieving multicycles, a question that has been of
great interest in spin glass researchf8g. We find that when a
square lattice is used instead of a triangular one, multicycles
are not as likely to be seen. As discussed later in this paper,
the magnetization in the pillars prefers to be approximately
vertical, so that the dipolar coupling between the pillars is
antiferromagnetic. For a square lattice, the dipolar forces be-
tween nearest neighbors are not frustrated, unlike the case for
a triangular lattice.sThere is still some frustration because of
further neighbor interactions.d From this result, we conjec-
ture that frustration plays an important role for the existence
of multicycles. However, it has been shownf11g that systems
with different coordination numbers have qualitatively
different hysteresis loops regardless of the amount of
frustration.
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For the spin glass system considered earlier, disorder was
explicitly present through the random bond strengths. For the
nanoparticle array, although the bond strengths are not ran-
dom sunless the spacings between the pillars are variedd,
there is crystalline anisotropy, arising from the fact that the
magnetization prefers to align itself in a specific direction
relative to the crystal axes. Because of the way in which the
pillars are grown, the orientation of the crystal axes is differ-
ent in each pillar, and random. Even if the crystalline aniso-
tropy energy is small compared to the dipolarsand otherd
energies, we find that it is sufficient to cause multicycles in
an otherwise regular triangular lattice. The order of the mul-
ticycle for a specific sample depends on the orientation of the
crystalline axes in its pillars. Although in this paper we con-
sider only the case of randomly oriented crystal axes, if the
pillars could be grown with the orientations specified, it
would be possible to make arrays whose hysteresis loops are
multicycles of desired order.

Regardless of the source, it is desirable to havesomein-
homogeneity in the model to see multicycles. Without this,
as the external magnetic field is reduced from saturation, the
sequence in which the magnetic moments of the pillars
changes depends strongly on thermal noise, and repeatable
multicycles are not obtained for any given sample.

The model used for the dynamics in our numerical simu-
lations is discussed in detail in the next section; the magnetic
moment of each pillar is treated as a single “Heisenberg
spin,” i.e., with its orientation as a continuous variable, with
continuous time dynamics. This is in contrast to the earlier
spin glass work, with Ising spins and discretesevent drivend
dynamics. Even though the dynamics are continuous, as dis-
cussed in the next section there is a shape anisotropy energy
for tall pillars that causes the magnetization to be nearly
vertical and to jump from up to downsor vice versad as the
external field is changed. This jump can trigger instabilities
in other pillars, forming an avalanche. We believe that in
order for multicycles to be seen, it is essential for the inter-
action between pillars to be sufficiently strong to cause ava-
lanches; in the extreme case, when the pillars are indepen-
dent, it is clear that a one-cycle hysteresis loop would be
seen. However, avalanches are not sufficient to produce dis-
order: for disordered nearest neighbor Ising ferromagnets,
the phenomenon of return point memorysRPMd f12,13g can
be proved, precluding multicycles. This leads us to speculate
that frustration is needed.

This is the first paper, as far as we are aware, that studies
adiabatic hysteresis loops in magnetic systems using the
more fundamental Landau-Lifshitz-GilbertsLLGd equations
rather than simplified relaxational dynamics. Experience
from critical phenomena might lead one to believe that the
difference between this approach and previous work would
be trivial. However there is an important physical difference
that we believe has been overlooked. LLG dynamics destroy
symmetry under global spin flip, even though the Hamil-
tonian is symmetric under this operation. This mechanism
for the asymmetry is impossible for scalar models such as
Ising models. This result, which will be discussed further in
the next section of this paper, has significant experimental
implicationsf14g.

In the next section of this paper, the dynamical equation
used in the numerical simulations is introduced, and various

terms in the model Hamiltonian are calculated. Details of the
numerics are given in Sec. III, and the results thereof are
presented in Sec. IV.

II. CLASSICAL SPIN DYNAMICS AND THE MODEL
HAMILTONIAN

Microscopically, the evolution of classical spins is de-
scribed by the Landau-Lifshitz-Gilbert equation of motion
f15g. The LLG equation is the simplest equation describing
micromagnetic dynamics which contains a reactive term and
a dissipative term:

ds

dt
= − g1s3 B − g2s3 ss3 Bd, s1d

wheres is a microscopic spin,B is the local effective field,
g1 is a precession coefficient, andg2 is a damping coeffi-
cient. The effective field isB=−]H /]s+z, whereH is the
Hamiltonian andz represents the effect of thermal noise.
Terms in the Hamiltonian will be discussed and computed
later in this section.

The reactive term of the LLG equation describes the pre-
cession of the spin about its local field, with the angle be-
tween the two remaining constant.sThe coefficient of the
reactive termg1 will be set to unity throughout this paper
unless otherwise noted.d The dissipative term aligns the spin
with its local effective field. The cross products in the dissi-
pative term ensure that only the tangential component of the
field causes damping, since the length ofs cannot change.
The relaxation time is inversely related to the damping coef-
ficient g2. Reasonable approximations forg2 are difficult to
obtain, but it will be shown that the hysteresis multicycle
phenomenon studied in this paper is present for a large range
of g2.

With current technology, nanomagnetic pillars that are ap-
proximately 50 nm wide and 100 nm tall can be made of
ferromagnetic materials such as nickelf9g. For such small
pillars, it is found that the ferromagnetic coupling between
the atoms dominates the antiferromagnetic dipolar interac-
tions. Thus the entire pillar consists of a single magnetic
domain. Using the lattice constant of nickel, each pillar holds
approximately 107 atoms, allowing us to treat the pillar as a
continuous magnetic medium. Edge effects such as splaying
near the boundaries are neglected, and the pillar is treated as
a saturated nanomagnet with uniform magnetization. Each
single-domain nanomagnet can be viewed as a single degree
of freedom: a magnetic moment of fixed magnitude, whose
orientation represents the direction of the magnetizationf16g.
The time evolution of this magnetic moment has thesame
structure as the micromagnetic LLG equation: a reactive part
−g1s3B, and a dissipative part −g2s3 ss3Bd, althoughg2

is different from its microscopic value.sHenceforths will
denote a unit vector in the direction of the magnetic moment
of a pillar, rather than an individual spin.d As before, the field
B is given by −]H /]s; the large number of spins evolving in
unison in each pillar allows the thermal noisez to be ne-
glected.

To complete the specification of the dynamics of the mag-
netic moments through Eq.s1d, the Hamiltonian has to be
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calculated in terms of the magnetic moment of each pillar.
The various terms in the Hamiltonian are discussed in the
following paragraphs.

First, the geometry of the pillars introduces a shape aniso-
tropy term in the Hamiltonian:

HSA= − dzo
i

sz,i
2 , s2d

wheredz is a constant to be calculated in the next paragraph
andsz,i is thez component of the magnetic moment of theith
pillar. Shape anisotropy energy is present because of the di-
polar interactions between the individual spins within a pil-
lar. Qualitatively, if the magnetization of a tall skinny pillar
is vertical, the spins are predominantly lined up “head to
toe.” This configuration has a lower energy than when the
magnetization is horizontal, in which case the spins are pre-
dominantly side by side. For a short wide disk, the effect is
clearly reversed.

For the case of tall pillars, the shape anisotropy reduces
the magnetic moment to an almost Ising-like variable, that
cansapproximatelyd point only up or down. The dynamics of
anisotropic and isotropic spins are qualitatively different,
with avalanche phenomena more likely to occur in the
former than the latter. As mentioned earlier, we believe that
avalanches are necessary for hysteretic multicycles. Note that
even when the shape anisotropy is large, we evolve each
magnetic moment according to Eq.s1d rather than as an Ising
variable, i.e., with an orientation that evolves continuously
with time, although the shape anisotropy causes rapid transi-
tions from up to down states.

Deriving the form ofHSA and the value ofdz requires
solving a magnetostatic problem. The energy of the field due
to the microscopic spins in a single pillar isW
=s1/2m0ded3xuBsxdu2, whereBsxd is the magnetic field atx
due to the spins. Through Ampere’s law and vector calculus
manipulations, we can rewrite this in terms of the magneti-
zationM sxd. For uniform magnetization, the result cansup to
an additive constantd be converted to asquadrupled integral
over two surfaces, similar to electrostatics, with the self-
energy of the magnetic surface “charge” to be calculated. For
cylindrical pillars, which we consider in the rest of this pa-
per, if the magnetization has magnitudeM0 and makes an
angleu to the vertical, andR andh are the radius and height
of the pillars, the final result is

W= m0M0
2R3FS h

R
Dcos2 u s3d

up to an additive constant independent ofu. Comparing with
Eq. s2d, we see thatdz=−m0M0

2R3Fsh/Rd, whereFsh/Rd is a
function of the aspect ratio that can be evaluated numerically.
With M0 equal to the saturation magnetization for nickel,
4.843105 A/m f9g, the values ofdz for different sized pil-
lars are given in Table I. If the pillars are ellipsoidal instead
of cylindrical, dz can be obtained analytically instead of nu-
merically f9,16g.

A second form of anisotropy energy is caused by the crys-
tal structure of Ni. As mentioned earlier, the crystal axes give
a preferential direction to the magnetization, independent of

the shape of the pillar. Nickel has a face-centered cubic
structure which tends to align spins in thef111g direction. If
ax,i, ay,i, andaz,i are the direction cosines of the magnetiza-
tion of the ith pillar to its sx,y,zd crystal axes, the crystal
anisotropy energy can be expanded in powers ofa. The first
two terms aref9,16g

HCA = o
i

−
K1

2
sax,i

4 + ay,i
4 + az,i

4 d + K2ax,i
2 ay,i

2 az,i
2 , s4d

where an additive constant has been dropped. The material
parametersK1 and K2 can be obtained by multiplying the
experimentally obtained energy densities by the volume of
the pillars. Crystal anisotropy energy densities have approxi-
mate values of −53103 and −23103 J/m3 for K1/V and
K2/V respectivelyf9g. Athough the ratio ofK2/K1 is ,0.4,
the first term dominates, since it has two fewer powers ofa.

In addition to the shape and crystal anisotropies that affect
each pillar by itself, there is dipolar coupling between pillars.
Microscopically, this is similar to the shape anisotropy en-
ergy, except that it arises from interactions between spins on
different pillars. The resultant interaction energy is of the
form

Hdip = o
i,jÞi

si ·Asr i jd ·sj . s5d

Asr i jd is a second-rank tensor that depends only on the sepa-
ration of the pillars. The elements ofAsr i jd are determined by
numerically solving integrals similar to the integrals for the
shape anisotropy energy.

The last term in the Hamiltonian is due to the external
magnetic field, which we take to be in thez direction. The
form of this term is the conventional one,Hext=−Beosz,i.
Hysteresis occurs asBe is varied adiabatically, with the sys-
tem evolving according to the LLG equation.

In summary, the full Hamiltonian has four terms: shape
anisotropy, crystalline anisotropy, external field, and dipole-
dipole interaction. The first two are properties of the pillars
individually, the external field term is the term that is adia-
batically changed to observe hysteresis, and the dipole term
is an interaction between pillars:

TABLE I. Calculated shape anisotropy coefficientsdz for pillars
with radius R=30 nm and different aspect ratiosh/R. The ratios
between crystalline anisotropy coefficients anddz are also given.

h/R dz s10−18 Jd uK1/dzu uK2/dzu

0.5 −2.866 0.0740 0.0296

1 −2.689 0.1577 0.0631

2 0.769 1.102 0.441

3 5.754 0.2211 0.0885

4 11.30 0.1501 0.0600

5 17.11 0.1240 0.0496

10 47.41 0.0894 0.0358
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H = o
i
S− dzsz,i

2 −
K1

2
sax,i

4 + ay,i
4 + az,i

4 d + K2ax,i
2 ay,i

2 az,i
2

− Besz,i + o
jÞi

si ·Asr i jd ·sjD . s6d

In the numerics, the actual values of the coefficients in the
Hamiltonian are inconsequential, and only the ratios of terms
are relevant. Table I shows the results of the calculations
described above fordz, K1, andK2. Evidently, for the dimen-
sions of the nanomagnetic pillars of interest, the shape an-
isotropy term is larger than the crystalline anisotropy. The
dipolar coupling is also small compared todz for the lattice
spacings of interest. In the simulations, all energies are nor-
malized todz. Althoughdz is dominant for pillars with aspect
ratios of interest, the other terms must be included in the
Hamiltonian because they affect the dynamics qualitatively.
Without the dipole term, each pillar would be isolated. The
crystalline anisotropy term introduces quenched randomness
in the system, and determines the order in which thesi’s flip
when the magnetic field is changed; its importance has been
discussed toward the end of Sec. I. Thus the Hamiltonian of
Eq. s6d has all the important terms that have to be kept.

As mentioned in Sec. I, although the Hamiltonian of Eq.
s6d is invariant if all thesi’s are flippedsalong with the ex-
ternal magnetic fieldd, the dynamics of Eq.s1d are not. In Eq.
s1d, under spin and external field reversal, the left hand side
and the dissipative term on the right hand side change sign,
but the reactive term does not. Therefore the spin inversion
symmetry, although relevant to equilibrium static properties,
does not apply to the nonequilibrium dynamics appropriate
for hysteresis. In particular, the two branches of the major
hysteresis loop are not complementary to each other.

III. NUMERICS

As mentioned earlier, the pillars are modeled as single
degrees of freedom which follow the LLG equation of mo-
tion. The effective field for each magnetic moment in the
LLG equation is the “spin” derivative of the Hamiltonian of
the previous section. Pillars are placed on a two-dimensional
triangular lattice, to maximize the frustration of the dipolar
bonds. All systems studied are 434 lattices with open
boundary conditions. Unlike simulations of conventional
condensed matter systems withOs1023d particles, the array
size chosen here is not an approximation because arrays
could be fabricated with an arbitrary number of pillars. The
size and boundary condition dependence of the phenomena
we observe may have interesting features; this is left for
future work. The positions of the pillars arei x̂+ jsx̂ /2
+ ŷÎ3/2d with i , j =0, . . . ,3. The orientation of the crystallo-
graphic axes is separately and randomly chosen for each pil-
lar. Depending on the choice of these random orientations, a
sample can have multicycles of various ordersm, or a simple
hysteresis loopsi.e., m=1d. Square lattices are also consid-
ered.

The dimensions of the cylinders and the separation be-
tween them, the external field range, and the damping coef-
ficient g2 are input parameters. These are used to calculate

dz, K1, K2, and the elements ofAsr i jd. All the input param-
eters can be adjusted to maximize the occurrence of multi-
cycles, exceptg2. Sinceg2 is a property of the material, but
is unknown, we make sure that the results reported here are
valid over a wide range ofg2: essentially the entires0,̀ d
range for multicycles, and 0.0005,g2,50 for asymmetric
major hysteresis loops, which should include the experimen-
tally appropriate value. For instance, in NiFe films,g2/g1 is
measured to be 0.013f17g. As long as the ratiog2/g1 is
finite, the major hysteresis loop will be asymmetric, although
the asymmetry will become small asg2→` and the dynam-
ics are effectively Ising-like.

Numerical modeling of the adiabatic field variation is
straightforward. The external field is lowered or raised by a
small field stepdBe. To optimize speed, the field stepdBe is
adjusted adaptively, since a small step is required during ava-
lanches. The effective field is then calculated and the system
evolves by a small time stepdt with this field. This time
evolution is repeated, without changingBe. Numerical inte-
gration of the LLG equation is implemented using the fourth-
order Runge-Kutta algorithm. Once the system “settles” to a
stationary state, the external field is changed again. Waiting
for the system to reach a stationary state is equivalent to
varyingBe more slowly than all the dynamics of the system,
i.e., adiabatically. The time scale of an avalanche is pre-
sumed to be very short; therefore during an avalanche,dBe is
adjusted to be extremely small to maintain adiabatic change.

The requirement for settling is that the configuration after
the evolution by a time stepdt is essentially the same as the
configuration before. In practice, some numerical tolerance is
allowed, and the initial and final configurations must differ
by less than this tolerance. The sumsdsx,i

2 +dsy,i
2 +dsz,i

2 for
eachi andoidsz,i must all be less than 10−11 in one time step
for the system to be considered stationary. The results re-
ported here are insensitive to a reduction ofdBe, dt, or the
tolerance, and therefore represent adiabatic field variation
with continuous time dynamics.

Starting from a large positiveBe sso that all the pillars are
magnetized upwardd the external field is lowered and cycled
adiabatically over a rangef−Be

max,Be
maxg. The configuration

hsij is compared atBe
max after each cycle. Ifhsij is the same

after everym occurrences ofBe=Be
max, the system is in an

m-cycle. Similar to the condition for settling, the configura-
tions match up to a tolerance; we have verified in numerous
cases that the tolerance does not introduce spurious multi-
cycles. A tolerance of 10−4 for each component of the mag-
netization was found to be sufficient. Initially, the system
undergoes a transient period of a few cycles ofBe before
reaching a limit cycle.

Figure 1 shows the major hysteresis loop for a sample
realization of randomness. Since all the pillars are magne-
tized vertically each timeBe= ±Be

max= ±`, m is trivially
equal to 1. However, one can see the avalanching dynamics
characteristic of this system, and the fact—discussed
earlier—that the ascending and descending branches of the
major loop are not complementary. Figure 2 shows a hyster-
esis minor loop with a two-cycle.

IV. RESULTS

Using an algorithm that performs the operations of the
previous section, we search through a large number of real-
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izations of randomness to find regions in parameter space
where the probability of finding multicycles is high. The pa-
rameters in the model are the radiusR and heighth of the
pillars, Be

max, and the damping coefficientg2. If the lattice
spacing,R, andh are all scaled by a factorl, all the terms in
the Hamiltonian are scaled byl3, which does not affect the
ratios of the terms. Accordingly, the lattice spacing can be set
to 100 nm without loss of generality. Given a set of param-
eters, the algorithm determines the periodicitym for a given
realization of randomness. By classifying the periodicity for
a large number of realizations, we obtained the approximate
probability for finding anm-cycle as a function ofm.

The easiest parameter to vary experimentally isBe
max. As

mentioned in the previous section, whenBe
max is too large or

too small, multicycles will not be present. We find that mul-
ticycles can be roughly optimally found whenBe

max ap-
proaches the saturation fieldBe

sat but not greater.Be
sat is dif-

ferent for every realization of randomness; therefore the

optimal field can only be determined by scanning over vari-
ous values ofBe

max. The range ofBe
max where the occurrence

of multicycles is appreciable depends on the pillar dimen-
sions. ForR=30 nm andh=180 nm, the probability of find-
ing multicycles whenBe

max is optimal is ,2–3 times the
probability whenBe

max is ,15% smaller than the optimal
field. In general, for systems in which the probability of find-
ing multicycles is small, the range ofBe

max where the prob-
ability is nonzero is narrow. The narrow range inBe

max is not
an obstacle to finding multicycles due to the ease of tuning
this parameter experimentally.

The damping coefficient of the LLG equation,g2, cannot
be easily calculated. In fact, different experimental environ-
ments could allow for a large range ofg2. Because of our
inability to obtain a reasonable and realistic approximation
for g2, we run searches for a wide range ofg2 srelative to
g1d. The results show that multicycles exist for very smallg2
to essentially infinite damping.sThe large damping limit is
implemented by settingg1=0 and keepingg2 finite.d Small
values ofg2 tend to give more multicycles, as one might
expect: the probability of finding multicycles increases by a
factor of ,1.5 wheng2 is reduced fromg1 to ,0.1g1. Un-
expectedly, the multicycle probability also seems to increase
slightly wheng2 is larger thang1. When the dynamical equa-
tion is strictly dissipativesg1=0d, the multicycle probability
is comparable to the probability wheng2*g1. There are no
clear trends in the distribution ofm wheng2 is changed.

Because of the difficulty in calculatingg2, we conserva-
tively setg2 to a value where the probability of finding mul-
ticycles is approximately minimal. As mentioned in the pre-
ceding paragraph, this occurs wheng2<g1. With Be

max at its
optimal value, andg2=g1=1, the probabilities of finding
multicycles for systems with pillars of differentR andh are
found. The different terms in the Hamiltonian scale differ-
ently asR and h are varied. Table II shows results for sys-
tems of the same aspect ratiosh/R=5d and different radii.
The pillar radius cannot be larger than,45 nm with a lattice
spacing of 100 nm. From Table II, one can see that systems
of pillars with larger radii generally display multicycles more
often.

The occurrence of multicycles depends largely on the as-
pect ratio of the pillars. Avalanches tend to occur only for
pillars whereh/R is large; accordingly, systems with disk-

FIG. 1. Major hysteresis loopssolid curved for a 434 triangular
lattice of pillars. The steps demonstrate avalanching dynamics. In
order to see that the ascending and descending branches of the loop
are not complementary, the dashed curve shows the same hysteresis
loop, with M →−M and B→−B; the solid and dashed curves
clearly do not coincide.

FIG. 2. A hysteresis two-cycle, starting atBe=−Be
max. The solid

curve is a hysteresis loop after one cycle of the external field. The
dashed curve is the hysteresis loop after the second cycle. Another
sweep of the external field would retrace the solid curve, indicating
that this particular realization of randomness undergoes a two-cycle.
Be

max is less than the saturation fieldBe
sat. sIf Be

max were increased
beyondBe

sat, no multicycles would be found. Thus the two-cycle
shown in this figure is a minor loop.d

TABLE II. Approximate probabilities of finding anm-cycle for
systems with pillars of different radii. The lattice spacing is 100 nm
and the aspect ratioh/R is 5.

R snmd Pm=2 Pm=3 Pm=4 Pm.4 Pm.1

10 0 0 0 0 0

20 0.08 0.02 0 0 0.1

25 0.14 0.12 0.02 0.04 0.32

30 0.2 0.06 0.04 0.16 0.46

35 0.22 0.22 0.04 0.12 0.6

40 0.22 0.12 0.1 0.18 0.62

45 0.28 0.12 0 0.10 0.50
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shaped pillars, i.e., with negativedz, do not display multi-
cycles. In fact, even whendz is positive, multicycles are only
found for a sufficiently large shape anisotropy energy. Table
III shows numerical results for systems of pillars with a
30 nm radius and various aspect ratios. Multicycles are only
likely to be found for systems with long pillars. No multi-
cycles are found for disk-shaped pillars as expected.

Systems with pillar vacancies are also studied. Vacancies
are implemented by introducing a finite probability for a pil-
lar to be missing at every lattice site. One might expect that
these vacancies would introduce more randomness in the
system, thereby increasing the number of multicycles. For
pillars with R=30 nm andh=150 nm, the probability of
finding a multicycle is,0.46 without any vacancies. When
the probability of having a vacancy at a site is small
s,0.2d, the number of multicycles drops by about 40%.
When the vacancy probability increases to*0.5, the prob-
ability of finding multicycles decreases to less than 0.1. This
decrease in probability could be due to the decrease in the
number of pillars. We conclude that, contrary to what one
might expect, random vacancies do not increase the probabil-
ity of multicycles.

The probability of finding a multicycle is significantly less
on a square lattice than on a triangular lattice; for a pillar
array arranged in a square lattice, the probability of finding a
multicycle is approximately half of the corresponding prob-
ability for a triangular lattice. We speculate that this differ-
ence in probabilities could be due to the different amount of
frustration between the configurations. If a square lattice is
used instead of a triangular one, the dipolar couplings be-
tween nearest neighbor pillars are not frustrated. In a check-
erboard pattern, all nearest neighbor bonds would be satis-
fied, but the next nearest neighbor bondssand certain
neighbors further apartd would not be satisfied. Thus, if frus-
tration is important for the existence of multicycles, multi-
cycles are expected to be much less probable on a square
lattice.

A possible mechanism for increasing frustration and dis-
order is to introduce random ferromagnetic couplings be-
tween pillars. These bonds could be manufactured by build-
ing one large pillar instead of two small ones. The large

pillar would have two domains that are coupled ferromag-
netically. By randomly assigning the bonds with some prob-
ability, more disorder can be introduced in addition to that
from the crystalline anisotropy. We did not study how these
ferromagnetic bonds affect the number of multicycles.

One interesting question is whether exact return point
memory f12g survives when it is extended beyond the ran-
dom field Ising model with purely ferromagnetic interactions
to continuous time vector models. To answer that, we use the
LLG model with nearest neighbor random ferromagnetic in-
teractions and the same crystalline and shape anisotropy
model that is used aboveswithout dipole couplingd. We ap-
ply a random field and search for violations of RPM with
different random seeds. We start at high fields and go to a
minimum field of −1.7 and record the spin configuration.
Then we go up to a field 1.7 and back down to −1.7. We find
that for a 434 square lattice of spins, of the order of 1% of
systemsviolate RPM because the initial and final minimum
configurations and total magnetization are substantially dif-
ferent. Violation of RPM is seen both with and without the
precessional term in Eq.s1d. This shows that it is not
possible to extend the proof of RPM to continuous vector
models.

V. CONCLUSIONS

In this paper, we have investigated the feasibility of ob-
serving multicycles and noncomplementary hysteresis loops
in a candidate experimental system: that of cylindrical mag-
netic nanopillars arranged on a lattice. We have performed
realistic numerical simulations of this system by calculating
the magnetic interactions between the pillars and then em-
ploying continuous spin dynamics and the Landau-Lifshitz-
Gilbert equation to obtain their time evolution. Using physi-
cally appropriate parameters, we have shown that there is
often multicycle hysteretic behavior, i.e., a periodic adiabatic
external magnetic field causes a subharmonic steady state
response in the magnetization. Because systems of this kind
are currently the subject of much experimental investigation,
we believe that it would be fruitful to attempt to observe the
unusual behavior predicted here.

We have also shown that, even though the Hamiltonian is
invariant under spin and external field reversal, the dynamics
are not, so that the ascending and descending branches of the
major hysteresis loop are not complementary. This result re-
quires both a precessional and a relaxational term in the dy-
namics, emphasizing the importance of both. In particular,
since it is impossible to include precession for Ising models,
they are—despite their ubiquitousness for strongly aniso-
tropic magnets—qualitatively inadequate in certain respects.
Further implications of the noncomplementary nature of
LLG dynamics will be studied elsewheref14g and in future
research.
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TABLE III. Approximate probabilities of finding anm-cycle for
systems with pillars of different aspect ratiosh/R. The lattice spac-
ing is 100 nm and the radius is fixed at 30 nm.

h/R Pm=2 Pm=3 Pm=4 Pm.4 Pm.1

0.5 0 0 0 0 0

1 0 0 0 0 0

3 0.16 0.04 0.02 0.12 0.34

4 0.12 0.08 0.02 0.16 0.38

5 0.2 0.06 0.04 0.16 0.46

6 0.16 0.1 0.06 0.16 0.48

10 0.24 0.2 0.06 0.1 0.6
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